- Member of the Texas Instruments
 Widebus+™ Family
- Pinout Optimizes DDR-II DIMM PCB Layout
- Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
- Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
- Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
- Supports SSTL 18 Data Inputs
- Differential Clock (CLK and CLK) Inputs

- Supports LVCMOS Switching Levels on the Control and RESET Inputs
- RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 5000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V V_{CC} operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.

All inputs are SSTL_18, except the LVCMOS reset (RESET) and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.

The SN74SSTU32864 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.

The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (V_{REF}) inputs are allowed. In addition, when RESET is low, all registers are reset and all outputs are forced low. The LVCMOS RESET and Cn inputs always must be held at a valid logic high or low level.

The two V_{REF} pins (A3 and T3), are connected together internally by approximately 150 Ω . However, it is necessary to connect only one of the two V_{REF} pins to the external V_{REF} power supply. An unused V_{REF} pin should be terminated with a V_{REF} coupling capacitor.

ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
0°C to 70°C	LFBGA – GKE	Tape and reel	SN74SSTU32864GKER	SU864	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

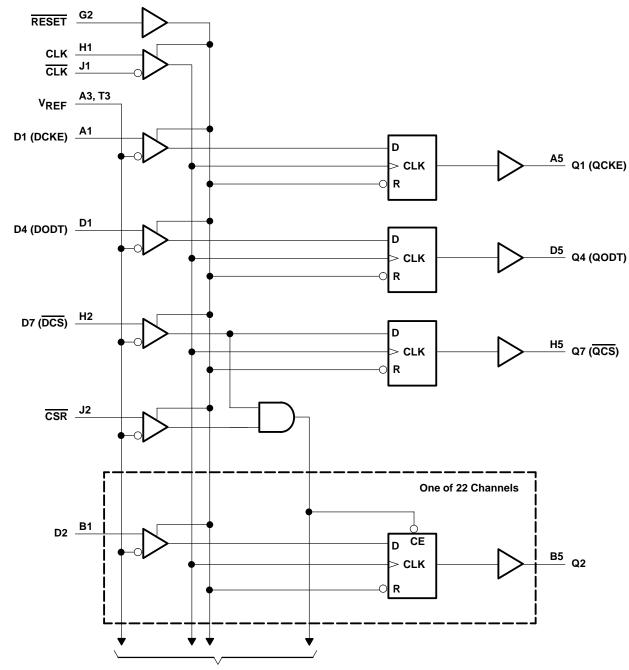
description/ordering information (continued)

The device also supports low-power active operation by monitoring both system chip select (\overline{DCS} and \overline{CSR}) inputs and will gate the Qn outputs from changing states when both \overline{DCS} and \overline{CSR} inputs are high. If either \overline{DCS} or \overline{CSR} input is low, the Qn outputs function normally. The \overline{RESET} input has priority over the \overline{DCS} and \overline{CSR} control and forces the output low. If the \overline{DCS} control functionality is not desired, the \overline{CSR} input can be hard-wired to ground, in which case, the setup-time requirement for \overline{DCS} is the same as for the other D data inputs.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

GKE PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000Α 000000 В 000000 С D 000000000000 Ε 000000 F 000000 G 000000 Н 000000 J Κ 000000 000000 L 000000М 000000 Ν Р 000000 000000 R 000000 Т

terminal assignments for 1:1 register (C0 = 0, C1 = 0)


	1	2	3	4	5	6
Α	D1 (DCKE)	NC	V _{REF}	Vcc	Q1 (QCKE)	DNU
В	D2	D15	GND	GND	Q2	Q15
С	D3	D16	Vcc	Vcc	Q3	Q16
D	D4 (DODT)	NC	GND	GND	Q4 (QODT)	DNU
Ε	D5	D17	VCC	VCC	Q5	Q17
F	D6	D18	GND	GND	Q6	Q18
G	NC	RESET	VCC	VCC	C1	C0
Н	CLK	D7 (DCS)	GND	GND	Q7 (QCS)	DNU
J	CLK	CSR	V _{CC}	Vcc	NC	NC
K	D8	D19	GND	GND	Q8	Q19
L	D9	D20	Vcc	Vcc	Q9	Q20
M	D10	D21	GND	GND	Q10	Q21
N	D11	D22	VCC	VCC	Q11	Q22
Р	D12	D23	GND	GND	Q12	Q23
R	D13	D24	VCC	Vcc	Q13	Q24
Т	D14	D25	V _{REF}	Vcc	Q14	Q25

Each pin name in parentheses indicates the DDR-II DIMM signal name.

NC – No internal connection

DNU - Do not use

logic diagram for 1:1 register configuration (positive logic)

To 21 Other Channels (D3, D5, D6, D8-D25)

SN74SSTU32864 25-BIT CONFIGURABLE REGISTERED BUFFER WITH SSTL 18 INPUTS AND OUTPUTS

SCES434 - MARCH 2003

GKE PACKAGE (TOP VIEW)

2 3 4 5 6 000000 Α 000000 В 000000 С 000000 D 000000 Ε 000000 F 000000 G 000000 Н 000000 J 000000 Κ L 000000 000000 000000 Ν 000000 Ρ R 000000 Т 000000

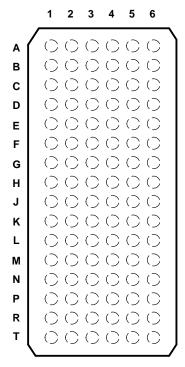
terminal assignments for 1:2 register A (C0 = 0, C1 = 1)


	1	2	3	4	5	6
Α	D1 (DCKE)	NC	VREF	Vcc	Q1A (QCKEA)	Q1B (QCKEB)
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	VCC	VCC	Q3A	Q3B
D	D4 (DODT)	NC	GND	GND	Q4A (QODTA)	Q4B (QODTB)
Ε	D5	DNU	Vcc	Vcc	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	NC	RESET	Vcc	VCC	C1	C0
н	CLK	D7 (DCS)	GND	GND	<u>Q7A</u> (QCSA)	Q7B (QCSB)
J	CLK	CSR	VCC	VCC	V _{CC} NC	
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	VCC	VCC	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	D11	DNU	VCC	VCC	Q11A	Q11B
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V _{CC}	V _{CC}	Q13A	Q13B
T	D14	DNU	V _{REF}	Vcc	Q14A	Q14B

Each pin name in parentheses indicates the DDR-II DIMM signal name.

NC - No internal connection

DNU - Do not use


logic diagram 1:2 register-A configuration (positive logic)

SN74SSTU32864 25-BIT CONFIGURABLE REGISTERED BUFFER WITH SSTL_18 INPUTS AND OUTPUTS

SCES434 - MARCH 2003

GKE PACKAGE (TOP VIEW)

terminal assignments for 1:2 register B (C0 = 1, C1 = 1)

	1	2	3	4	5	6
Α	D1	NC	VREF	Vcc	Q1A	Q1B
В	D2	DNU	GND	GND	Q2A	Q2B
С	D3	DNU	Vcc	V _{CC}	Q3A	Q3B
D	D4	NC	GND	GND	Q4A	Q4B
Е	D5	DNU	Vcc	Vcc	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	NC	RESET	VCC	VCC	C1	C0
н	CLK	D7 (DCS)	GND	GND	Q7A (QCSA)	Q7B (QCSB)
J	CLK	CSR	Vcc	V _{CC}	NC	NC
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	Vcc	Vcc	Q9A	Q9B
М	D10	DNU	GND	GND	Q10A	Q10B
N	D11 (DODT)	DNU	Vcc	^V CC	Q11A (QODTA)	Q11B (QODTB)
Р	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	Vcc	V _{CC}	Q13A	Q13B
т	D14 (DCKE)	DNU	V _{REF}	Vcc	Q14A (QCKEA)	Q14B (QCKEB)

Each pin name in parentheses indicates the DDR-II DIMM signal name.

NC – No internal connection

DNU - Do not use

logic diagram 1:2 register-B configuration (positive logic)

To 10 Other Channels (D2-D6, D8-D10, D12-D13)

SN74SSTU32864 25-BIT CONFIGURABLE REGISTERED BUFFER WITH SSTL 18 INPUTS AND OUTPUTS

SCES434 - MARCH 2003

TERMINAL FUNCTIONS

TERMINAL NAME	DESCRIPTION	ELECTRICAL CHARACTERISTICS
GND	Ground	Ground input
VCC	Power-supply voltage	1.8 V nominal
V _{REF}	Input reference voltage	0.9 V nominal
CLK	Positive master clock input	Differential input
CLK	Negative master clock input	Differential input
C0, C1	Configuration control inputs – Register A, Register B, 1:1, 1:2 select	LVCMOS inputs
RESET	Asynchronous reset input – resets registers and disables V _{REF} data and clock differential-input receivers	LVCMOS input
D1-D25	Data inputs – clocked in on the crossing of the rising edge of CLK and the falling edge of CLK	SSTL_18 inputs
CSR, DCS	Chip select inputs – disables D1-D25 [†] outputs switching when both inputs are high	SSTL_18 inputs
DODT	The outputs of this register bit will not be suspended by the DCS and CSR control.	SSTL_18 input
DCKE	The outputs of this register bit will not be suspended by the DCS and CSR control.	SSTL_18 input
Q1-Q25 [‡]	Data outputs that are suspended by the DCS and CSR control	1.8 V CMOS outputs
QCS	Data output that will not be suspended by the DCS and CSR control	1.8 V CMOS output
QODT	Data output that will not be suspended by the DCS and CSR control	1.8 V CMOS output
QCKE	Data output that will not be suspended by the DCS and CSR control	1.8 V CMOS output
NC	No internal connection	
DNU	Do not use – inputs are in standby-equivalent mode, and outputs are driven low.	

[†] Data inputs = D2, D3, D5, D6, D8–D25 when C0 = 0 and C1 = 0

Data inputs = D2, D3 D5, D6, D8-D14 when C0 = 0 and C1 = 1

Data inputs = D1–D6, D8–D10, D12, D13 when C0 = 1 and C1 = 1.

[‡] Data outputs = Q2, Q3, Q5, Q6, Q8–Q25 when C0 = 0 and C1 = 0

Data outputs = Q2, Q3 Q5, Q6, Q8-Q14 when C0 = 0 and C1 = 1

Data outputs = Q1-Q6, Q8-Q10, Q12, Q13 when C0 = 1 and C1 = 1.

FUNCTION TABLES

	INPUTS						
RESET	DCS	CSR	CLK	CLK	Dn	Qn	
Н	L	Х	1	\downarrow	L	L	
Н	L	Χ	\uparrow	\downarrow	Н	Н	
Н	X	L	\uparrow	\downarrow	L	L	
Н	Χ	L	\uparrow	\downarrow	Н	Н	
Н	Н	Н	\uparrow	\downarrow	Χ	Q_0	
Н	Х	Χ	L or H	L or H	Χ	Q ₀ Q ₀	
L	X or floating	L					

	INPUTS					
RESET	CLK	CLK	DCKE, DCS, DODT	QCKE, QCS, QODT		
Н	1	\downarrow	Н	Н		
Н	\uparrow	\downarrow	L	L		
Н	L or H	L or H	X	Q_0		
L	X or floating	X or floating	X or floating	L		

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 2.5 V
Input voltage range, V _I (see Notes 1 and 2)	–0.5 V to 2.5 V
Output voltage range, VO (see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3)	36°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This value is limited to 2.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74SSTU32864 25-BIT CONFIGURABLE REGISTERED BUFFER WITH SSTL 18 INPUTS AND OUTPUTS

SCES434 - MARCH 2003

recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		1.7		1.9	V
VREF	Reference voltage		0.49 × V _{CC}	0.5 × V _{CC}	0.51 × V _{CC}	V
٧ _I	Input voltage		0		VCC	V
VIH	AC high-level input voltage	Data inputs, CSR	V _{REF} +250 mV			V
V _{IL}	AC low-level input voltage	Data inputs, CSR			V _{REF} -250 mV	V
VIH	DC high-level input voltage	Data inputs, CSR	V _{REF} +125 mV			V
VIL	DC low-level input voltage	Data inputs, CSR			V _{REF} -125 mV	V
VIH	High-level input voltage	RESET, Cn	0.65 × V _{CC}			V
V _{IL}	Low-level input voltage	RESET, Cn			$0.35 \times V_{CC}$	V
VICR	Common-mode input voltage range	CLK, CLK	0.675		1.125	V
V _{I(PP)}	Peak-to-peak input voltage	CLK, CLK	600			mV
loн	High-level output current				-8	mA
loL	Low-level output current				8	IIIA
TA	Operating free-air temperature		0		70	°C

NOTE 4: The RESET and Cn inputs of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS		Vcc	MIN	TYP [†]	MAX	UNIT	
V		$I_{OH} = -100 \mu\text{A}$		1.7 V to 1.9 V	V _{CC} -0.	.2		V	
VOH		I _{OH} = -6 mA		1.7 V	1.2			l ^v	
Vai		I _{OL} = 100 μA		1.7 V to 1.9 V			0.2	V	
VOL		$I_{OL} = 6 \text{ mA}$		1.7 V			0.5	V	
lį	All inputs [‡]	$V_I = V_{CC}$ or GND		1.9 V			±5	μΑ	
loo	Static standby	RESET = GND	$I_{O} = 0$	1.9 V			100	μΑ	
lcc	Static operating	$\overline{RESET} = V_{CC}, V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	10=0	1.9 V			40	mA	
	Dynamic operating – RESET = VCC, VI = VIH(AC) or VIL(AC), CLK and CLK switching 50% duty cycle					28		μΑ/ MHz	
ICCD	Dynamic operating – per each data input, 1:1 configuration	RESET = VCC, VI = VIH(AC) or VIL(AC), CLK and CLK switching 50% duty cycle, One data input switching at one-half clock frequency, 50% duty cycle	IO = 0	1.8 ∨		18		μΑ/ clock	
	Dynamic operating – per each data input, 1:2 configuration					36		MHz/ D input	
	Chip-select-enabled low-power active mode – clock only	RESET = V _{CC} , V _I = V _{IH} (AC) or V _{IL} (AC), CLK and CLK switching 50% duty cycle	I _O = 0			27		μΑ/ MHz	
ICCDLP	Chip-select-enabled low-power active mode – 1:1 configuration	RESET = VCC, VI = VIH(AC) or VIL(AC), CLK and CLK switching 50% duty cycle.		I _O = 0	1.8 V		2		μΑ/ clock
	Chip-select-enabled low-power active mode – 1:2 configuration	One data input switching at one-half clock frequency, 50% duty cycle				2		MHz/ D input	
_	Data inputs, CSR	$V_I = V_{REF} \pm 250 \text{ mV}$			2.5	3	3.5		
Ci	CLK, CLK	$V_{ICR} = 0.9 \text{ V}, V_{I(PP)} = 600 \text{ mV}$		1.8 V			3	pF	
	RESET	$V_I = V_{CC}$ or GND				2.5			

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Note 5)

			MIN	MAX	UNIT
fclock	Clock frequency			500	MHz
t _W	Pulse duration, CLI	K, CLK high or low	1		ns
t _{act}	Differential inputs a		10	ns	
t _{inact}	Differential inputs inactive time (see Note 7)			15	ns
		DCS before CLK↑, CLK↓, CSR high; CSR before CLK↑, CLK↓, DCS high	0.7		
t _{su}	Setup time	DCS before CLK↑, CLK↓, CSR low	0.5		ns
		DODT, DCKE, and Data before CLK↑, CLK↓	0.5		
th	Hold time	DCS, DODT, DCKE, and Data after CLK↑, CLK↓	0.5		ns

NOTES: 5. All input slew rates are 1 V/ns ±20%.

VREF must be held at a valid input level and data inputs must be held low for a minimum time of t_{act} max, after RESET is taken high.
 VREF, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of t_{inact} max, after RESET is taken

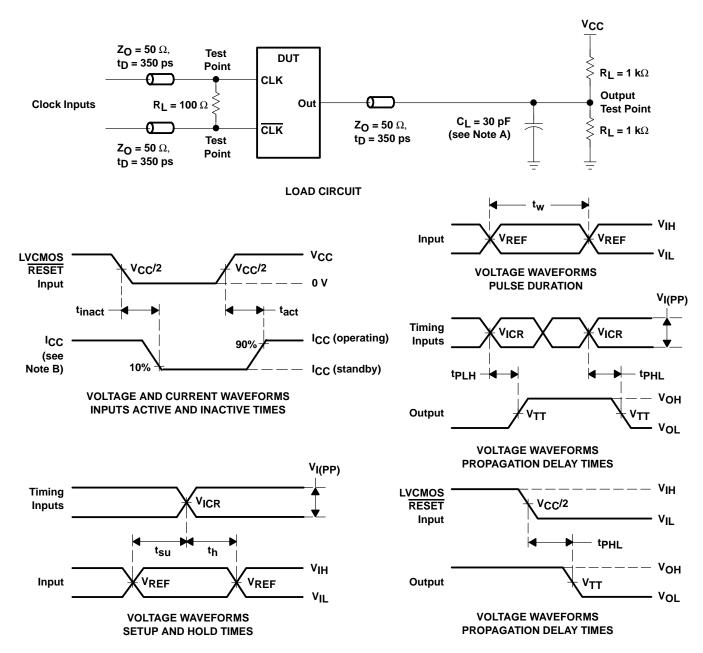
[†] All typical values are at V_{CC} = 1.8 V, T_A = 25°C. ‡ Each V_{REF} pin (A3 or T3) should be tested independently, with the other (untested) pin open.

SN74SSTU32864 25-BIT CONFIGURABLE REGISTERED BUFFER WITH SSTL 18 INPUTS AND OUTPUTS

SCES434 - MARCH 2003

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	UNIT	
	(1141 01)	(0011 01)	MIN		
f _{max}			500		MHz
t _{pdm} †	CLK and CLK	Q	1.4	2.5	ns
t _{pdmss} †	CLK and CLK	Q		2.7	ns
t _{RPHL} †	RESET	Q		3	ns

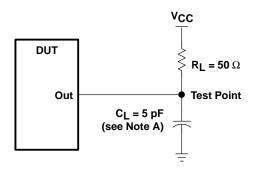

[†] Includes 350-ps test-load transmission-line delay

output slew rates over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

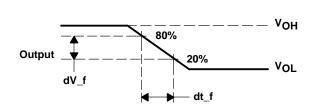
PARAMETER	FROM	то	V _{CC} =	UNIT	
			MIN	MAX	
dV/dt_r	20%	80%	1.9	4.9	V/ns
dV/dt_f	80%	20%	1.9	4.9	V/ns
dV/dt_Δ§	20% or 80%	80% or 20%		1	V/ns

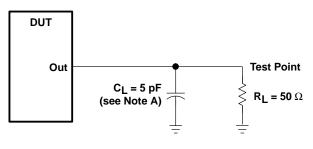
[§] Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate)

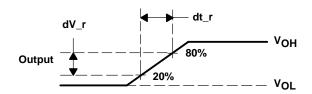
PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_L includes probe and jig capacitance.

- B. I_{CC} tested with clock and data inputs held at V_{CC} or GND, and $I_{O} = 0$ mA.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , input slew rate = 1 V/ns \pm 20% (unless otherwise noted).
- D. The outputs are measured one at a time with one transition per measurement.
- E. VREF = VCC/2
- F. V_{IH} = V_{REF} + 250 mV (ac voltage levels) for differential inputs. V_{IH} = V_{CC} for LVCMOS input.
- G. V_{IL} = V_{REF} 250 mV (ac voltage levels) for differential inputs. V_{IL} = GND for LVCMOS input.
- H. $V_{I(PP)} = 600 \text{ mV}$
- I. tpLH and tpHL are the same as tpd.


Figure 1. Load Circuit and Voltage Waveforms


PARAMETER MEASUREMENT INFORMATION


LOAD CIRCUIT
HIGH-TO-LOW SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS
HIGH-TO-LOW SLEW-RATE MEASUREMENT

LOAD CIRCUIT
LOW-TO-HIGH SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS LOW-TO-HIGH SLEW-RATE MEASUREMENT

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , input slew rate = 1 V/ns \pm 20% (unless otherwise specified).

Figure 2. Output Slew-Rate Measurement Information

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74SSTU32864NMJR	ACTIVE	NFBGA	NMJ	96	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	SU864	Samples
SN74SSTU32864ZKER	LIFEBUY	LFBGA	ZKE	96	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	0 to 70	SU864	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

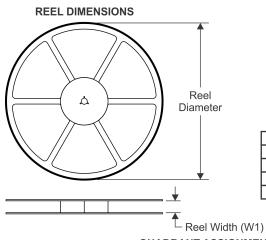
OBSOLETE: TI has discontinued the production of the device.

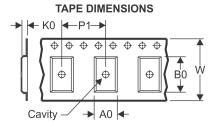
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

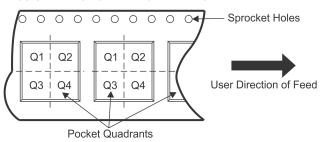
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 22-Nov-2017

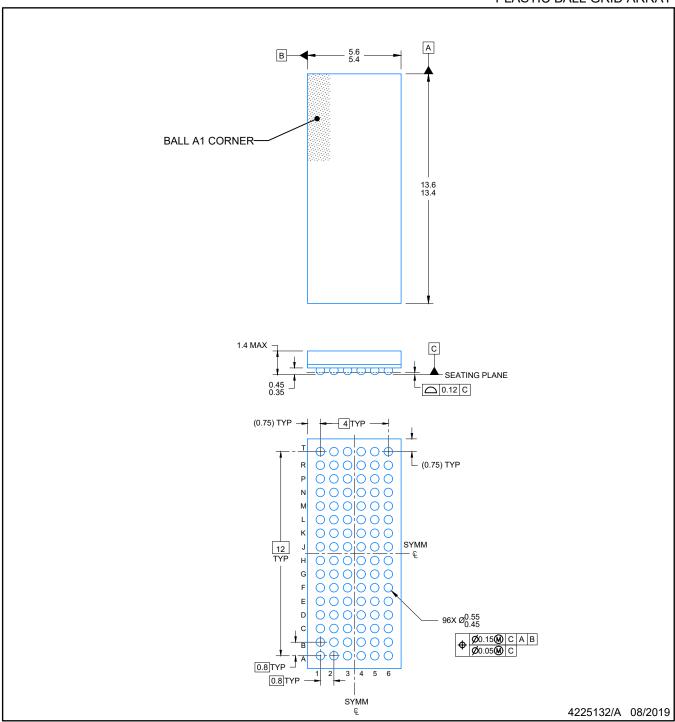

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

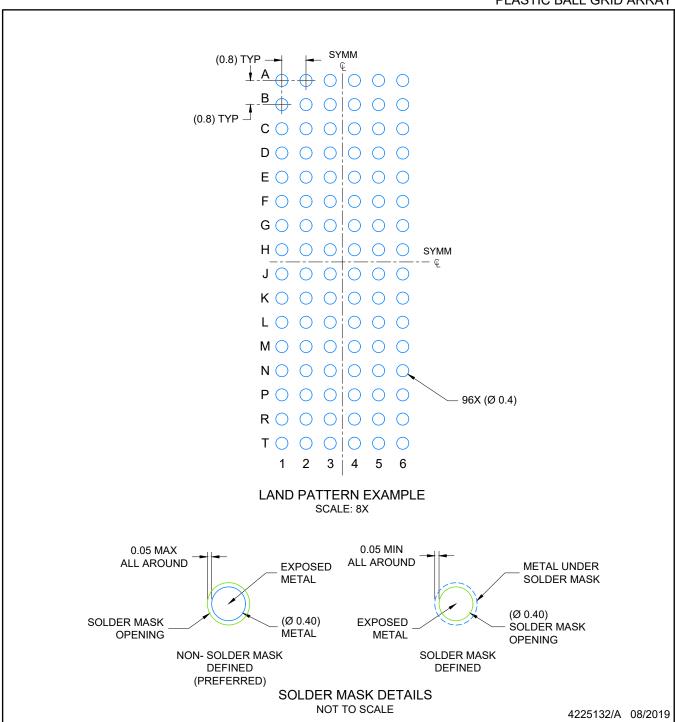
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74SSTU32864ZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1


www.ti.com 22-Nov-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74SSTU32864ZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3

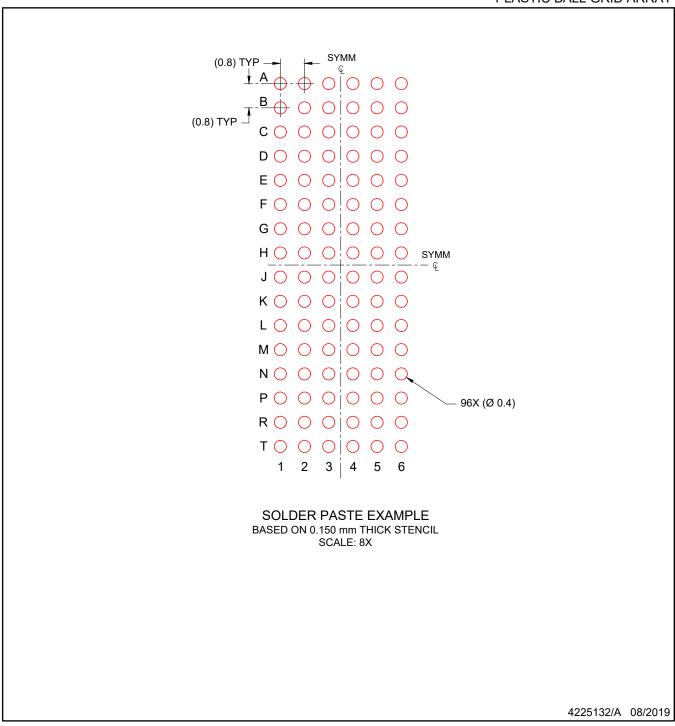
PLASTIC BALL GRID ARRAY


NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

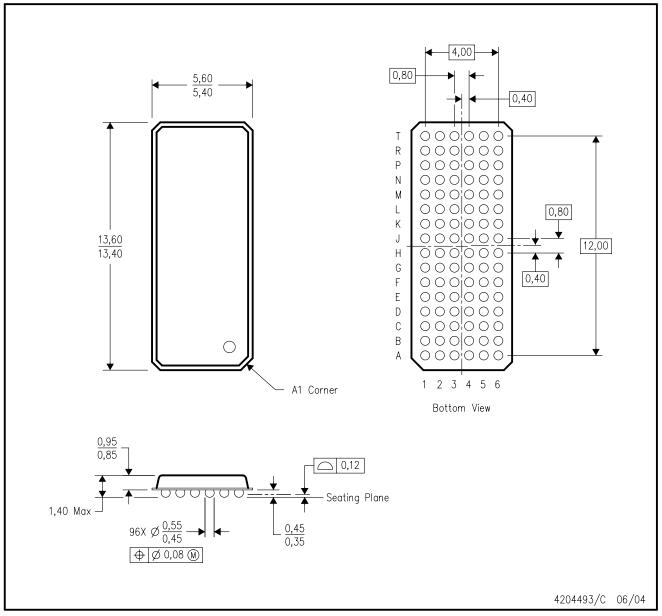
PLASTIC BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

PLASTIC BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated